欢迎来到RayBet下载地址官网!
东锜模具钢

扫一扫咨询详情

全国咨询热线:

0512-66159259
当前位置: 主页> 新闻动态> 企业新闻
新闻动态 News

联系热线

0512-66159259

微信号:13382185616
手 机:13382185616
邮 箱:tokai@tokais.net
地 址:江苏苏州市相城区聚民路68号

铝冷挤压模具材料力学性能(铝材冷挤压和热挤压)

发布时间:2023-07-05 09:13:08 人气:

今天给各位分享铝冷挤压模具材料力学性能的知识,其中也会对铝材冷挤压和热挤压进行解释,现在开始吧!

冷挤压模具材料

冷挤压模具材料

冷挤压模具中,受力最大的部分是凸、凹模,因此,凸、凹模材料的选择对冷挤压工艺能否奏效 至关重要。

根据宴践经验,对凸、凹模材料的选择大致应满足以下要求:(1)凸、凹模具在2450~2940MPa 高压下工作.必须具备很高的强度、硬度,以防止自身的塑性变形、磨损乃至损坏。(2)凸模、凹模是

在冲击条件下工作的,应当具有良好的冲击韧性 (3)凸模材料应具有较高的抗弯强度,以防工作时 损坏。(4)模具是在冷、热交变压力反复作用情况下工作的,必须能承受交变应力的反复作用而保持

原型。(5)模其的材料必须易加工。

根据实践经验,钢制工件凸模以选用6W6Mo5Cr4V1、W6Mo5Cr4Vg以及W18Cr4V材料为 好,凹模以选用Crl2MoV、CrWMn、GCr 材料为好}铝件凸模宜选用CrlgMo、9CrSi、Crl2、 wl8c"V.而凹模宜选用Crl2MoV、T10A、W18Cr4V以及YG20。 目前国内市场上W18Cr4V取材较易

采用W18Cr4V制造工件冷挤压凸摸,寿命可达1~5万次;用硬质合金YG20制造凹模,钢制 工件可达2O~ 40万次.铝制工件可达400~500万次。

为了提高玲挤压模具的耐磨性.近年来.国内外一些厂家采用气体软氮化工艺以提高楼具表面 硬度t这样模具耐磨寿命可提高2o 以上,GCrl5材料作凹模.采用渗钒工艺.也可使模具寿命从3 万次提高到24万次!金属工件少、无切削工艺之一的冷挤压工艺是当前生产中应用较为f 广泛的一种。它具有节约原材料、劳动生产率高以及成品机械强度高、刚性大、重量轻、表面光洁度及尺寸精度较高等优点。一些形状较复杂、切削加工较困难的金属工件,运用冷挤压工艺很容易加工成型。

冷挤压大批量铝合金型材模具用什么材料好

金属的挤压成型是在强烈的三向压应力状态下完成的,凸模既受强大的压应力,又受各种不均衡侧向力,在回程时瞬间易引起断裂,受力复杂的凸模,特别是在凸模尺寸变化处应力集中,易产生脆性断裂,而凹模有胀裂的可能以及由于金属剧烈流动而引起模腔严重磨损。冷挤压模具的结构尺寸、工艺、模具加工、润滑都对模具寿命有很大影响,但首先要重视选材和热处理工艺。传统的冷挤压模具材料有:T10A、CrWMn、60Si2Mn、Crl2、Crl2MoV、W18Cr4V、W6Mo5Cr4V等钢,使用过程都发现凸模易折断,凹模易胀裂,这表明了强韧性较差。用国产新型模具钢如:基体钢6W6(6W6Mo5Cr4V2)、LD(7Cr7Mo2V2Si)、65Nb (6Cr4W3Mo2VNb)、012Al(5Cr4Mo3SiMnVAl)、RM2(5Cr4W5Mo2V)、LM1(65W8Cr4VTi)、LM2(65Cr5Mo3W2VSiTi)以及高碳低合金钢GD(6CrNiSiMnMoV)、CH-1(7CrSiMnMoV)等可大大提高强韧性,其耐磨性可通过表面处理来达到。冷挤压模具选用老钢种时,可采用与提高厚板冲裁模强韧性的相同措施来解决,例如重载冷挤压凸模常用高速钢制作,抗压强度和耐磨性都很好,缺点是韧性差,易脆断,降低淬火温度或减少高速钢中的碳化物可提高高速钢的断裂抗力。新型就是一个例子。在加工两端带有凹坑的冷挤压件时,原用Wl8Cr4V钢制作凸模、Cr12MoV钢制作凹模,寿命为1万多件,模具为断裂失效。

热锻和冷挤压产品对材料有什么要求

锻件生产对模具材料的基本要求是:在锻模工件条件(工作温度、载荷性质和"接触时间")下材料应具有良好的冶金质量和组织稳定性、综合力学性能、疲劳性能和耐腐蚀性等使用性能以及良好的冷热加工工艺性能。

工件温度(或称使用温度)是指模具在实际使用时的加载过程中模膛表面所达到的最高温度与卸载后至下一次加载间隙时间内模膛表面冷却降温至最低温度之间的温度。在黑色金属锻件连续生产情况下,前者的温度可以达到600℃,甚至更高,乃至引起模膛表面金属的回火和相变。从而降低模具材料的力学性能;而后者基本上保持在模体的使用温度,即250℃~350℃,长期在脉冲式的热负荷(600℃至250℃~350℃交变)作用下会引起模具材料的冷热疲劳。

冷挤压模具损坏分析要谨慎

冷挤压模具损坏分析要谨慎

冷挤压模具损坏分析一定要谨慎

模具是实现少、无切削加工的重要工艺装备,在现代生产中日益得到广泛的应用。

在冷挤压加工时,常常遇到一些妨碍正常投产的重要问题,就是模具受到损坏,主要表现有如下三种失效类型:

(1)断裂失效,如,塑性断裂失效、疲劳断裂失效、 蠕 变断裂失效、低应力脆断失效、介质加速断裂失效等。

(2)过量变形失效,主要包括过量的弹性和塑性变形失效。

(3)型腔表面损伤失效,如,磨损失效、腐蚀失效、表面疲劳(点蚀或剥落)失效等。

当凸、凹零件产生上述这种缺陷时,那就不能制造出合格的挤压件,严重影响工厂的生产计划,为此,工程技术人员应要及时解决造成这些缺陷的关键问题。

生产实践指出,每副模具的承载能力、工作使用寿命、制造精度及产品合格率,在很大程度上取决于模具钢的化学成分、模具零件的加工质量及热处理工艺等。

为了生产出高质量、高经济效益的产品挤压件,必须从模具结构设计、选用模具材料、机械加工、热处理、生产成本等方面全面进行考虑,才能达到应有的技术经济效果。

1.模具早期失败的统计数据

任何一种失败原因,都需要了解及分析模具损坏的根本因素,应从生产实践中收集第一手资料,即社会调查。

以模具外表和内部检验结果为依据,找出其中影响模具失效的决定性因素,就可以查明模具失效的特征和损坏的根本原因。当然,模具失效往往是由几个因素综合作用的结果,在进行具体分析时,必须充分考虑各个因素之间的相互影响和有机联系。

模具早期失效是由原材料质量不好、模具使用条件不好、模具加工方法不好、模具毛坯锻造工艺不好、模具热处理工艺不佳及模具结构设计不合理等原因造成的。因此,为了防止模具早期失效,延长模具使用寿命,应从上述几方面采取有效的、相应的预防措施。

2.冷挤压模具的工作条件

冷挤压模具工作条件极其恶劣。冷挤凸模的受力情况随挤压方法的不同而异。

正挤压凸模主要承受压应力的作用,而反挤压凸模或复合挤压凸模,在挤压工作行程时,承受着很大的.压应力作用,在回程时则承受较小的拉应力,这个拉、压应力是交变产生的。不论是正挤压还是反挤压,往往还受到偏心负荷所引起的弯曲应力的作用。由此可以看出,冷挤压凸模受到拉、压和弯曲应力的综合作用,其受力状态是比较复杂的。

冷挤压凹模内壁由于承受着较大的内压力的作用,从而使凹模的圆周方向上作用着较大的拉应力。

此外,冷挤压成形是在很短时间内完成的,且将大截面的坯料变成小截面的挤压件,从而使模具承受着交变的冲击载荷。

冷挤压过程中的热效应以及模具工作表面受到的剧烈磨擦作用,使挤压件温升高达300~400℃,从而使模具在工作时温度升高,不工作时温度又有下降,这就是说,模具还承受着冷热交变应力的作用。

如此苛刻的工作条件,使得冷挤压模具的使用寿命比其它模具要短得多。因此,为了延长模具的使用寿命,降低产品成本,提高经济效益,查明模具失效的根本原因,并采取得力的措施加以解决,对于冷挤压模具显得比其它的模具更为重要。

3.模具损坏的各种具体因素

冷挤压模具因受使用情况不同,使用的钢种复杂,加工工序多等,可将影响模具使用寿命的各种具体因素分为如下六个方面:

(1)挤压件方面

在挤压件设计时,与模具失效有关的有:

①原材料钢号;

②制件形状及尺寸;

③挤压方式;

④变形程度;

⑤制件尺寸精度。

(2)模具设计方面

冷挤压时,影响模具使用寿命的有:

①模具材料使用不当;

②硬度不合理;

③面与面相交处有尖角;

④厚薄壁相差过大;

⑤连接圆角半径过小;

⑥材料纤维取向不合理;

⑦配合精度不当。

(3)模具材质方面

在选用模具材质时,密切有关的有:

①钢的纯净度差;

②化学成分偏析;

③钢内疏松;

④带状(网状)碳化物;

⑤带状组织;

⑥球化退火质量不好。

(4)机械加工方面

模具零件金属切削加工时,影响模具失效的有:

①磨削损伤,形成微裂纹痕迹;

②电加工质量差;

③连接圆角半径较小;

④表面粗糙度差;

⑤尺寸精度差;

⑥加工应力未除去。

(5)热处理方面

在热处理模具零件时,影响模具失效的有:

①加热速度不当;

②淬火温度不当;

③冷却速度不当;

④保温时间不当;

⑤炉内气氛不当;

⑥回火次数不够;

⑦表面硬度不够;

(6)使用操作方面

在冷挤压加工生产时,与模具失效有关的有:

①模具安装不当;

②润滑条件差;

③冷却条件不当;

④设备状况不好;

⑤实际操作不按要求。

通过如上所指出的,影响冷挤压模具使用寿命的各种各种诸多因素,使我们清楚地看到,对具体的实际生产问题,需采用相应的措施来逐步解决。

4.结束语

挤压模具对模具钢的韧性,表面硬度,强度以及抗回火性能要求比较高。

Toolox系列材料中的Toolox44材料,非常适合用于铝挤压模具,原因如下:

Toolox44材料,由于已经在钢厂就进行了热处理,内应力非常小,Toolox44具备了很高的韧性,比较同等硬度的H13系列材料,韧性有大幅度的提高,Toolox44回火温度达到640摄氏度左右,在600度以下保证Toolox44的力学性能不变。

由于Toolox44是全新的冶金成分设计,氮化性能非常优异,氮化层和Toolox基体材料结合非常好,Toolox44表面氮化的硬度可以达到HRC65。

Toolox44材料的氮化性能还体现在Toolox44可以多次氮化,可以达到10次以上。

Toolox44材料的抛光性能非常好,能得到很光滑的模具表面,在挤压时候的阻力能大大降低,因此Toolox44材料应用在铝挤压模具时,配合良好的表面氮化,能够得到非常理想的效果,从客户的实际使用情况来开,相比较欧洲的1.2344ESR"(8047)"模具寿命一般来说能提高一倍,即Toolox44的寿命是1.2344ESR"(8047)"材料的约2倍寿命,而且由于省去了热处理费用和时间,大大缩短了模具加工的时间,节省了很多费用。

冷挤压模具的工作条件极为复杂和恶劣,一副模具在使用过程中往往交织着各种损伤情形,这些损伤相互作用、相互促进,最后以一种或多种形式失效。为此,对冷挤压模具使用寿命的影响因素,应进行认真细致研究及分析,如有丰富的实践经验,可直接选用有效的方法,应以不断探索、不断更新、不断提高、不断总结的精神来完成现代模具生产。

;

模具的力学性能要求

模具的力学性能要求

模具除其本身外,还需要模座、模架、模芯导致制件顶出装置等,这些部件一般都制成通用型。下面,我为大家分享模具的力学性能要求,希望对大家有所帮助!

硬度

硬度表征了钢对变形和接触应力的抗力。测硬度的试样易于制备,车间、试验室一般都配备有硬度计,因此,硬度是很容易测定的一种性能,而且硬度与强度也有一定关系,可通过硬度强度换算关系得到材料硬度值。按硬度范围划定的模具类别,如高硬度(52~60HRC),一般用于冷作模具,中等硬度(40~52HRC),一般用于热作模具。

钢的硬度与成分和组织均有密切关系,通过热处理,可以获得很宽的硬度变化范围。如新型模具钢012Al和CG-2可分别采用低温回火处理后硬度为60~62HRC,采用高温回火处理后硬度为50~52HRC,因此可用来制作硬度要求不同的冷、热作模具。因而这类模具钢可称为冷作、热作兼用型模具钢。

模具钢中除马氏体基体外,还存在更高硬度的其他相,如碳化物、金属间化合物等。表l为常见碳化物及合金相的硬度值。

模具钢的硬度主要取决于马氏体中溶解的碳量(或含氮量),马氏体中的含碳量取决于奥氏体化温度和时间。当温度和时间增加时,马氏体中的含碳量增多马氏体硬度会增加,但淬火加热温度过高会使奥氏体晶粒增大,淬火后残留奥氏体量增多,又会导致硬度下降。因此,为选择最佳淬火温度,通常要先作出该钢的淬火温度—晶粒度—硬度关系曲线。

马氏体中的含碳量在一定程度上与钢的合金化程度有关,尤其当回火时表现更明显。随回火温度的增高,马氏体中的含碳量在减少,但当钢中合金含量越高时,由于猕散的合金碳化物折出及残留奥氏体向马氏体的转变,所发生的二次硬化效应越明显,硬化峰值越高。

常用硬度测量方法有以下几种:

1.洛氏硬度(HR) 是最常用的一种硬度测量法,测量简便、迅速,数值可以从表盘上直接选出。洛氏硬度常用三种刻度,即HRC、HRA、HRB。

2.布氏硬度(HB) 用淬火钢球作硬度头,加上一定试验力压人工件表面,试验力卸掉以后测量压痕直径大小,再查表或计算,使得出相应的布氏硬度值HB。

布氏硬度测试主要用于退火、正火、调质等模具钢的硬度测定。

3.维氏硬度(HV) 采用的压头是具有正方形底面的金刚石角锥体,锥体相对两面间的夹角为136°,硬度值等于试验力F与压痕表面积之比值。

此法可以测试任何金属材料的硬度,但最常用于测定显微硬度,即金属内部不同组织的硬度。

三种硬度大致有如下的关系:HRC≈1/10HB,HV≈HB(当400HBS时)

常规力学性能

模具材料的性能是由模具材料的成分和热处理后的组织所决定的。模具钢的基本组织是由马氏体基体以及在基体上分布着的碳化物和金属间化合物等构成。

模具钢的性能应该满足某种模具完成额定工作量所具备的性能,但因各类模具使用条件及所完成的额定工作量指标均不相同,故对模具性能要求也不同。又因为不同钢的化学成分和组织对各种性能的影响不同,即使同一牌号的钢也不可能同时获得各种性能的最佳值,一般某些性能的改善会损失其他的性能。因而,模具工作者常根据模具工作条件及工作定额要求选用模具钢及最佳处理工艺,使之达到主要性能最优,而其他性能损失最小的目的。

对各类模具钢提出的性能要求主要包括:硬度、强度、塑性和韧性等。

强度

强度即钢材在服役过程中,抵抗变形和断裂的能力。对于模具来说则是整个型面或各个部位在服役过程中抵抗拉伸力、压缩力、弯曲力、扭转力或综合力的能力。

衡量钢材强度常用的方法是进行拉伸试验。拉伸试验是在拉伸试验机上进行的,试棒需按规定的标准制备,拉伸过程中在记录纸上绘出拉伸力F与伸长量ΔL之间的关系图,即所谓的拉伸曲线图,分析拉伸曲线图就可以得出金属的强度指标。对于在压缩条件下工作的模具,还经常给出抗压强度。

对于模具钢,特别是含碳量高的冷作模具钢,因塑性很差,一般不用抗拉强度而是以抗弯强度作为实用指标。抗弯试验甚至对极脆的材料也能反映出一定的塑性。而且,弯曲试验产生的应力状态与许多模具工作表面产生的应力状态极相似,能比较精确地反映出材料的成分及组织因素对性能的影响。

在拉伸曲线图上有一个特殊点,当拉力到达这一点时,试棒在拉力不增加或有所下降情况下发生明显伸长变形,这种现象称为屈服。这时的应力称为这种材料的屈服点。而当外力去除后不能恢复原状的变形,这部分变形被保留下来,成为永久变形,称为塑性变形。屈服点是衡量模具钢塑性变形抗力的指标,也是最常用的强度指标。对模具材料要求具有高的屈服强度,如果模具产生了塑性变形,那么模具加工出来的零件尺寸和形状就会发生变化,产生废品,模具也就失效了。

塑性

淬硬的模具钢塑性较差,尤其是冷变形模具钢,在很小的塑性变形时即发生脆断。衡量模具钢塑性好坏,通常采用断后伸长率和断面收缩率两个指标表示。

断后伸长率是指拉伸试样拉断以后长度增加的相对百分数,以δ表示。断后伸长率δ数值越大,表明钢材塑性越好。热模钢的塑性明显高于冷模钢。

断面收缩率是指拉伸试棒经拉伸变形和拉断以后,断裂部分截面的缩小量与原始截面之比,以ψ表示。塑性材料拉断以后有明显的缩颈,所以ψ值较大。而脆性材料拉断后,截面几乎没有缩小,即没有缩颈产生,ψ值很小,说明塑性很差。

韧性

韧性是模具钢的一种重要性能指标,韧性决定了材料在冲击试验力作用下对破裂的抗断能力。材料的韧性越高,脆断的危险性越小,热疲劳强度也越高。对于衡量模具脆断倾向,冲击韧度试验具有重要意义。

冲击韧度是指冲击试样缺口处截面积上的冲击吸收功,而冲击吸收功是指规定形状和尺寸的试样在冲击试验力一次作用下折断时所吸收的功。冲击试验有夏比U形缺口冲击试验(试样开成U形缺口)、夏比V形缺口冲击试验(试样开成V形缺口)以及艾式冲击试验。

影响冲击韧度的因素很多。不同材质的模具钢冲击韧度相差很大,即使同一种材料,因组织状态不同、晶粒大小不同、内应力状态不同冲击韧度也不相同。通常是晶粒越粗大,碳化物偏析越严重(带状、网状等),马氏体组织越粗大等都会促使钢材变脆。温度不同,冲击韧度也不相同。一般情况是温度越高冲击韧度值越高,而有的钢常温下韧性很好,当温度下降到零下20~40℃时会变成脆性钢。

为了提高钢的韧性,必须采取合理的锻造及热处理工艺。锻造时应使碳化物尽量打碎,并减少或消除碳化物偏析,热处理淬火时防止晶粒过于长大,冷却速度不要过高,以防内应力产生。模具使用前或使用过程中应采取一些措施减少内应力。

特殊性能要求

由于模具种类繁多,工作条件差别很大,因此模具的常规性能及相互配合要求也各不相同,而且某种模具实际性能与试样在特定条件下测得的数据也不一致。所以,除测定材料的常规性能外,还必须根据所模拟的实际工况条件,对模具使用特性进行测量,并对模具的特殊性能提出要求,建立起正确评价模具性能的体系。

对热作模具必须测试在高温条件下的硬度、强度和冲击韧度。因为热作模具是在某一特定温度下服役,在室温下测定的性能数据,当温度升高时要发生变化。性能变化趋势和速率相差也很大,如A种材料在室温下硬度虽比材料B高,但随温度上升,硬度下降显著,到达—定温度后,硬度值反而会低于材料B。那么,当在较高温度工作条件下要求耐磨性高时,就不能选用A种材料,而需选用室温下硬度值虽较低但随温度上升,硬度下降缓慢的材料B。

对热作模具除要求室主高温条件下的硬度、强度、韧性外,还要求具有某些特殊性能。

热稳定性

热稳定性表征钢在受热过程中保持金相组织和性能的稳定能力。通常,钢的热稳定性用回火保温4h,硬度降到45HRC时的'最高加热温度表示。这种方法与材料的原始硬度有关,有资料将达到预定强度级别的钢加热,保温2h,使硬度降到一般热锻模失效硬度35HRC的最高加热温度定为该钢稳定性指标。对于因耐热性不足而堆积塌陷失效的热作模具,可以根据热稳定性预测模具的寿命水平。

回火稳定性

回火稳定性指随回火温度升高,材料的强度和硬度下降快慢的程度,也称回火抗力或抗回火软化能力。通常以钢的回火温度-硬度曲线来表示,硬度下降慢则表示回火稳定性高或回火抗力大。回火稳定性也是与回火时组织变化相联系的,它与钢的热稳定性共同表征钢在高温下的组织稳定性程度,表征模具在高温下的变形抗力。

断裂抗力

除常规力学性能如冲击韧度、抗压强度、抗弯强度等一次性断裂抗力指标外,小能量多次冲击断裂抗力更切合冷作模具实际使用状态性能。作为模具材料性能指标还包括抗压疲劳强度、接触疲劳强度等。这种疲劳断裂抗力指标是由在一定循环应力下测得的断裂循环次数,或在一定循环次数下导致断裂的载荷来表征的。关于是否把断裂韧度作为冷作模具材料的一项重要处能指标,尚待研究和探讨。

抗咬合能力及抗软化能力

抗咬合及抗软化能力分别表征了模具对发生"冷焊"及承载时因温度升高对硬度、耐磨性助抵抗能力。

热疲劳抗力及断裂韧度

热疲劳抗力表征了材料热疲劳裂纹萌生前的工作寿命和萌生后的扩展速率。热疲劳通常以20℃—750℃条件下反复加热冷却时所发生裂纹的循环次数或当循环一定次数后测定裂纹长度来确定。热疲劳抗力高的材料不易发生热疲劳裂纹,或当裂纹萌生后,扩展量小、扩展缓慢。断裂韧度则表征了裂纹失稳扩展抗力,断裂韧度高,则裂纹不易发生失稳扩展。

高温磨损与抗氧化性能

高温磨损是热作模具主要失效形式之一,正常情况下,绝大多数锤锻模及压力机模具都因磨损而失效。抗热磨损是对热作模具的使用性能的要求,是多种高温力学性能的综合体现。现在国内已有单位在自制的热磨损机上进行模具热磨损试验,收到较理想的试验效果。

实际使用表明,模具材料抗氧化性能的优劣,对模具使用寿命影响很大。因氧化会加剧模具工作过程中的磨损,导致模具型腔尺寸超差而报废。氧化还会使模具表面产生腐蚀沟,成为热疲劳裂纹起源.加剧模具热疲劳裂纹的萌生与扩展。因此,要求模具具备一定的抗氧化性能。

对冷作模具钢除常规力学性能外,还常要求具有下列性能:

耐磨性能,断裂抗力,抗咬合计抗氧化能力。

耐磨损性能

冷作模具服役时,被成形的坯料会沿着模具表面既滑动又流动,在模具与坯料间产生很大摩擦力。这种摩擦力使模具表面受到切应力作用,在其表面划刻出凹凸痕迹,这些痕迹与坯料不平整表面相咬合,逐渐在模具表面造成机械破损即磨损。冷作模具,特别是正常失效的冷作模具,多数因磨损而报废。因此,对冷作模具最基本的要求之一就是耐磨性。一般条件下材料硬度越高,耐磨性越好。但耐磨性与在软基体上存在的硬质点的形状、分布也有很大关系。

冷作模具的磨损包括磨料磨损、粘着磨损、腐蚀磨损与疲劳磨损。

模具制造心得

它有着生产成本低廉、产品一致性较好的优势,而且应用范围很大,从简单的碗盘等日常用品到复杂的雕塑等造型的创作和生产都离不开模具成型。它是陶瓷艺术工作者、陶瓷艺术爱好者所要着重掌握和了解的技能。我们这次的学习包括石膏浆的调制、同心圆造型、异型造型的车削翻模。了解石膏的材料特性,掌握使用方法步骤。并懂得陶瓷模种制作和翻制的方法步骤。

首先我们绘制好我们自己所想要的同心圆造型及异型造型。然后将图纸扩印,根据图纸来进行制作。

然后是制作模种了,利用准备好的工具在车模机上做出我们在图纸上所画出的同心圆瓶子的形状,大小。然后根据中线进行手工削制,最后,用耐水砂纸打磨平滑。

制作石膏模型首先要调制石膏料。石膏料的调制方法简单,首先准备好盆和石膏粉,然后在盆中先加入适量的水,再慢慢把石膏粉沿盆边撒入水中,一定要按照顺序先加水再加石膏。由于石膏料干固时间较短,而且要看天气而定。

然后到掉浮在石灰上面的一层水后,用手在里面均匀的搅拌,直到石膏粉冒出水面不再自然吸水沉陷,稍等片刻,就继续搅拌,要快速有力、用力均匀,成糊状即可。觉得差不多以后,就要等上6分种左右。接下来就可以将石膏浆倒到事先已经用模板挡好的模型上

,需要等上一会儿,觉得石膏干湿适中后,就可以通过各种工具在上面进行适当的操作。大约几分钟后拆去模板,迅速用刮刀或铲刀修出模型的大体形状;修表时应先从整体入手,再进行局部的精雕细刻,修大形时速度要快、要赶在石膏完全因化之前,否则石膏完全固化后铲削会很吃力。

其次是修形。修形是最关键的一步,不仅要有技巧,好要有耐心。先用小刀把初型进一步削修准确,接着用短锯条刮削,再用锯条北面进行刮削,这样模型将进一步接近实物造型;对于一些有变化的小曲面来说,还需要把锯条磨成小曲面的形状进行刮削;最后用砂纸蘸水打磨。精修过程要由粗到细、由整体到局部再到整体,要不时地从各个角度和各个面去比较、去审视、去测量,这样模型的整体感才强。如果模型表面有缺陷或边角崩缺则需要修补,首先要湿润需要修补处,然后用石膏浆填平,等干燥后打磨平整。

在做异形翻模时,我们用泥垫底,并围好造型。模具边上开牙口。在石膏模种上均匀涂抹脱模剂,然后用模板围出模具的外缘。在有缝隙的地方用泥巴塞好。然后再把石膏浆倒进里面,要稍高出异性一些体积。等石膏差不多发热干了再拆除模板。再用同种方法翻另外一块。等模具翻制完成后,等石膏发热反应冷却了,就可以开模取出模种,如果不容易打开的话,可以用水冲泡然后轻轻摇动的方法打开。

以上便是我对这次模具制作过程的了解。

模型制作课程已经结束了,但是这其中经历的东西,学到的知识会陪伴着我们,让我们更好的解决以后面临的问题。

我自认为在修造型的基础还不够,对翻模的操作也不够熟练但我会更加努力争取早日弥补自己的不足!

最后谢谢老师多日来的教导!

;

铝材冷挤压工艺原理是什么?

铝材冷挤压工艺原理:在常温下,根据塑性变形原理,利用装在压力机上的模具,通过凸模对放进凹模内铝材毛坯施加压力,使坯料在一定的速度下产生塑性变形而制得所需形状、尺寸及一定力学性能的零件。如下图:

【铝材挤压】是将铝材锭坯装入挤压筒中,通过挤压轴对铝材施加压力,使其从给定形状和尺寸的模孔中挤出,产生塑性变形而获得所要求的挤压产品的一种加工方法。按挤压时金属流动方向不同.挤压又可分为正向挤压、反向挤压和联合挤压。正向挤压时,挤压轴的运动方向和挤出金属的流动方向一致,而反向挤压时,挤压轴的运动方向与挤出金属的流动方向相反。按锭坯的加热温度,挤压可分为热挤压和冷挤压。热挤压时是将锭坯加热到再结晶温度以上进行挤压,冷挤压是在室温下进行挤压。

铝冷挤压模具材料力学性能的介绍就聊到这里吧,感谢你花时间阅读本站内容。

在线客服
服务热线

服务热线

0512-66159259

微信咨询
返回顶部
Baidu
map