一种控制31CrMoV9齿轮材料氮化物的热处理方法与流程
本发明属于金属材料热处理技术领域,具体涉及一种控制31CrMoV9齿轮材料氮化物的热处理方法。
背景技术:
为了提高31CrMoV9齿轮表面的硬度及耐磨性,现阶段国内通常使用气体渗氮作为提高31CrMoV9齿轮表面性能的有效热处理方法,工业生产中要求31CrMoV9齿轮材料的氮化层层深≥0.6mm。31CrMoV9由于含有V元素,其氮化时氮原子的渗入速度低,V等高合金元素阻碍了氮原子的进入,若形成氮化物则氮原子很难迁移而扩散,因此材质不容易形成白亮层以及疏松,且氮化物很难控制。现阶段气体渗氮中常采用以下方法:1、严格控制渗氮工艺,特别要控制炉气的氮势,减轻或防止脉状或网状氮化物的形成;2、严格控制氨气中的水分,采用一级液氨或采用高效的吸湿剂,以降低其水分含量;3、工件设计时,应避免尖角呈锐角,控制工件表面的粗糙度。
现有工艺由于气体渗氮工艺不当,氮化层常出现网状及脉状氮化物,严重影响渗氮质量,使渗层脆性增加,降低了氮化层的疲劳强度和耐磨性,氮化层极易脱落。现有工艺氮化后31CrMoV9齿轮材料的金相组织中氮化物较为严重,根据GB/T11354金相组织评判标准,氮化物级别为4级。
技术实现要素:
本发明主要提供了一种控制31CrMoV9齿轮材料氮化物的热处理方法,有效解决了原有氮化工艺产生的网状或者脉状氮化物的问题,从而有效提高了31CrMoV9齿轮材料氮化层的耐疲劳强度和耐磨性。其技术方案如下:
一种控制31CrMoV9齿轮材料氮化物的热处理方法,包括以下步骤:
(1)预处理:调质奥氏体化温度为910-920℃,高温奥氏体化将避免基体铁素体以及贝氏体的形成,使严重脉状网状氮化物的载体消除,回火控制调质硬度在330-350HB,使用有机溶剂对31CrMoV9齿轮清洗,除去31CrMoV9齿轮上的油渍及残物,对31CrMoV9齿轮进行防渗,装架后吊入气体渗氮炉内;
(2)排气:检查炉盖盖好无误后,调整电压、电流,对渗氮炉进行升温并通氮气;
(3)氧化:当炉温升到300-350℃时,关闭氮气,通入氧气,对工件进行高强度氧化处理,打破V元素对氮原子的阻尼,氧化结束后关闭氧气,通氮气,继续对炉体升温;
(4)强渗:当炉温升到440-460℃时,通入氨气进行氨气置换,当炉温升至550-570℃时,控制氮势及氮化时间进行强渗,使快速氮化形成氮化层主体;
(5)扩散:强渗结束后,扩散采用低温高氮势与高温低氮势的变温交替势能控制模型,先510℃且氮势0.5保持10h,再升温至530℃且氮势2.18保持10h,交替3次进行扩散处理,层深要求更深时可以增加交替次数;
(6)冷却:扩散结束后,关闭氨气,继续通入氮气,使炉温缓冷再进行风冷,工件出炉即可。
优选的,步骤(1)中所述有机溶剂为酒精。
优选的,步骤(2)中通入氮气的流量为15-20m3/h,炉压为300-400Pa。
优选的,步骤(3)中氧气流量为0.8m3/h,氧化时间为60min。
优选的,步骤(4)中在氮势16、氮化时间10h的条件下进行强渗。
优选的,步骤(6)中当炉温缓冷至400-450℃时开冷风机进行风冷,风冷至150-180℃工件出炉。
优选的,所述气体渗氮炉为井式气体渗氮炉或罩式气体渗氮炉。
采用上述方案,本发明具有以下优点:
本发明工艺设计合理,氮化前910-920℃高温奥氏体化调质可以为氮化提供优良的基体,摒弃常规的890-900℃奥氏体化工艺,该工艺在气体氮化阶段之前添加人工氧化干预过程,31CrMoV9需要更高的氧气流量以及保持时间以打破V元素对氮原子的阻尼,将在31CrMoV9齿轮材料表面快速生成一层较薄的均匀氧化膜,该氧化膜具有很高的表面自由能,对氮化物有很强的吸附性,显著提高了工件表面的氮含量,增大了工件表面的氮浓度梯度,形成了高的浓度差,显著提高了氮原子向基体扩散速度,避免了脉状及网状氮化物的形成,提高了工件表面耐疲劳强度和耐磨性。强渗阶段采用高温高氮势模型,将V等合金元素对氮原子的阻尼打破,快速形成氮化层的主体,在扩散时采用变温势能交替控制模型,高温低氮势扩散可以扩散氮化物,低温高氮势扩散可以增加层深,通过该工艺路线可以将强渗产生的氮化物扩散同时不形成严重脉状氮化物。同时本发明在氧化阶段不用附加任何辅助设备,氧化介质为瓶装工业氧气,通过管道配以流量计接入炉膛内,比单纯空气中氧化更均匀且效率更高,氧化与氮化同在气体渗氮炉内进行,操作简单易行。
附图说明
图1为现有氮化工艺曲线图;
图2为本发明氮化工艺曲线图;
图3为现有工艺气体渗氮层中氮化物的金相组织;
图4为本发明中气体渗氮层中氮化物的金相组织。
具体实施方式
以下实施例中的实验方法如无特殊规定,均为常规方法,所涉及的实验试剂及材料如无特殊规定均为常规生化试剂和材料。
实施例1
一种控制31CrMoV9齿轮材料氮化物的热处理方法,包括以下步骤:
(1)预处理:调质奥氏体化温度为920℃,回火控制调质硬度在330HB,使用酒精对31CrMoV9齿轮清洗,除去31CrMoV9齿轮上的油渍及残物,对31CrMoV9齿轮进行防渗,装架后吊入井式气体渗氮炉或罩式气体渗氮炉内;
(2)排气:对渗氮炉进行升温并通氮气,氮气的流量为15m3/h,炉压为400Pa;
(3)氧化:当炉温升到300℃时,关闭氮气,通入氧气,对工件进行高强度氧化处理,氧气流量为0.8m3/h,氧化时间为60min,氧化结束后关闭氧气,通氮气,继续对炉体升温;
(4)强渗:当炉温升到460℃时,通入氨气进行氨气置换,当炉温升至550℃时,在氮势16、氮化时间10h的条件下进行强渗,使快速氮化形成氮化层主体;
(5)扩散:强渗结束后,先510℃且氮势0.5保持10h,再升温至530℃且氮势2.18保持10h,交替进行扩散处理3次;
(6)冷却:扩散结束后,关闭氨气,继续通入氮气,使炉温缓冷至450℃时开冷风机进行风冷,风冷至150℃工件出炉即可。
上述工艺流程如图2所示。
实施例2
一种控制31CrMoV9齿轮材料氮化物的热处理方法,包括以下步骤:
(1)预处理:调质奥氏体化温度为910℃,回火控制调质硬度在350HB,使用酒精对31CrMoV9齿轮清洗,除去31CrMoV9齿轮上的油渍及残物,对31CrMoV9齿轮进行防渗,装架后吊入井式气体渗氮炉或罩式气体渗氮炉内;
(2)排气:对渗氮炉进行升温并通氮气,氮气的流量为20m3/h,炉压为300Pa;
(3)氧化:当炉温升到350℃时,关闭氮气,通入氧气,对工件进行高强度氧化处理,氧气流量为0.8m3/h,氧化时间为60min,氧化结束后关闭氧气,通氮气,继续对炉体升温;
(4)强渗:当炉温升到440℃时,通入氨气进行氨气置换,当炉温升至570℃时,在氮势16、氮化时间10h的条件下进行强渗,使快速氮化形成氮化层主体;
(5)扩散:强渗结束后,先510℃且氮势0.5保持10h,再升温至530℃且氮势2.18保持10h,交替进行扩散处理3次;
(6)冷却:扩散结束后,关闭氨气,继续通入氮气,使炉温缓冷至400℃时开冷风机进行风冷,风冷至180℃工件出炉即可。
对比例1
31CrMoV9齿轮至于渗氮炉中进行升温并通氮气保护,再在氮势为6的条件下进行强渗,再进行恒温扩散,冷却即可,该常规工艺流程如图1所示。
结果检测
取实施例1及对比例1工艺制备的工件,分别观察渗氮层中氮化物的金相组织。根据GB/T11354金相组织评判标准,实施例1工艺形成的氮化物扩散层中仅有少量呈脉状分布的氮化物,级别为1级,氮化层深可以达到0.65mm,表面硬度可以达到850HV1,具体渗氮层中氮化物的金相组织如图4所示。现有工艺即对比例1中工艺氮化后31CrMoV9齿轮材料的金相组织中有较严重脉状和少量断续网状分布的氮化物,根据GB/T11354金相组织评判标准,氮化物级别为4级,金相组织如图3所示。
经分析可知,本工艺氮化前910-920℃高温奥氏体化调质可以为氮化提供优良的基体,本发明中对丼式气体渗氮炉升温,当温度达到一定温度时,关闭氮气阀门,打开氧气流量计,通过人工氧气流量干预对工件进行高强度氧化处理,打破V元素对氮原子的阻尼,瓶装高纯氧气的预氧化效果比常规的空气中氧化更均匀、更纯净、效率更高,经过此氧化处理,31CrMoV9齿轮材料表面形成一层极薄的均匀氧化膜,该氧化膜松散,缺陷较多,表面自由能很高,对氮化物有很强的吸附性,显著提高了工件表面的氮含量,增大了材料表面氮浓度梯度,加快了氮原子向基体扩散的速度。强渗阶段采用高温高氮势模型,将合金元素对氮原子的阻尼打破,快速形成氮化层的主体,在扩散时采用变温势能交替控制模型,高温低氮势扩散可以扩散氮化物,低温高氮势扩散可以增加层深,通过该工艺路线可以将强渗产生的氮化物扩散同时不形成严重脉状氮化物。同无氧化阶段气体渗氮相比,工件经过相同处理温度、时间及相同氮势处理后,本发明工艺氮化后的氮化层中不存在脉状或网状氮化物,使氮化物从4级降到1级,进而提高了31CrMoV9齿轮材料表面疲劳强度及其耐磨性。同时通过氮化前的氧化处理,工件表面残留的残物、油渍将会被燃烧掉,起到对工件清扫的作用,同时去除了炉内及工件上残留的水渍。
本发明不用附加任何辅助设备,氧化阶段的瓶装工业氧气,管道连接,配以精确控制的流量计,控制精确简单方便。